Research Publication

Refereed Paper | Refereed Proceedings | Proceedings | Books

Refereed Paper

2014

  1. S. Ohtani, S. Wing, V. G. Merkin, T. Higuchi, Solar cycle dependence of nightside field-aligned currents: Effects of dayside ionospheric conductivity on the solar wind-magnetosphere-ionosphere coupling, J. Geophys. Res. Space Physics, Vol. 119, Issue 1, 322-334, doi:10.1002/2013JA019410, 2014.
  2. S. Wing, J. Jay, S. Ohtani, W. Gordon, T. Higuchi, Field-aligned currents during the extreme solar minimum between the solar cycles 23 and 24, J. Geophys. Res. Space Physics, to appear, 2014.
  3. H. Yamashita, T. Higuchi, R. Yoshida, Atom Environment Kernels on Molecules, J. Chem. Inf. Model, to appear, 2014.
 

2013

  1. H. Nagao, T. Higuchi, S. Miura, D. Inazu, Time-Series Modeling of Tide Gauge Records for Monitoring of the Crustal Activities Related to Oceanic Trench Earthquakes around Japan,The Computer Journal, Vol. 55, No. 10, doi:10.1093/comjnl/bxs139, 2013.
  2. M. Saito, S. Imoto, R. Yamaguchi,M. Tsubokura, M. Kami, H.Nakada, H. Sato, S, Miyano, T. Higuchi, Enhancement of collective immunity in Tokyo metropolitan area by selective vaccination against an emerging influenza pandemic,PLoS ONE, Vol.7, Issue 9, e43923, 2013.
  3.  

2012

  1. S. Nakano and T. Higuchi, Non-storm irregular variation of the Dst index,Annales Geophysicae, Vol.30, 153-162, 2012.
  2. H. Koyama, T. Umeda, K. Nakamura, T. Higuchi and A. Kimura, A high-resolution shape fitting and simulation demonstrated equatorial cell surface softening during cytokinesis and its promotive role in cytokinesis,PLoS ONE, Vol.7, Issue 2, e31607, 2012.
  3. M. Yamauchi, R. Yamaguchi, A. Nakata, T. Kohno, M. Nagasaki, T. Shimamura, S. Imoto, K. Ogami, A. Saito, K. Ueno, Y. Hatanaka, R. Yoshida, T. Higuchi, M. Nomura, D. G. Beer, J. Yokota, S. Miyano, N. Gotoh,Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma ,PLoS ONE, Vol. 7, Issue 9, e43923, 2012.
  4. K. Hirose and T. Higuchi, Creating facial animation of characters via MoCap data,Journal of Applied Statistics, Vol. 39, Issue 12, 2583-2597, 2012.

2011

  1. S. Saita, A. Kadokura, N. Sato, S. Fujita, T. Tanaka, Y. Ebihara, S. Ohtani, G. Ueno, K. Murata, D. Matsuoka, A. Kitamoto, and T. Higuchi, Displacement of conjugate points during a substorm in a global magnetohydrodynamic simulation,Journal of Geophysical Research, Vol.116, A06213, doi:10.1029/2010JA016155, 2011.
  2. S. Wing, S. Ohtani, J. R. Johnson, M. Echim, P. T. Newell, T. Higuchi, G. Ueno, and G. R. Wilson, Solar wind driving of dayside field‐aligned currents,Journal of Geophysical Research, VOl.116, A08208, doi:10.1029/2011JA016579, 2011.

2010

  1. D. Inazu, T. Higuchi, K. Nakamura, Optimization of boundary condition and physical parameter in an ocean tide model using an evolutionary algorithm,Theoretical and Applied Mechanics Japan, Vol.58, 101-112, 2010.
  2. K. Watanabe, T. Ishigaki, and T. Higuchi, A multivariable detection device based on a capacitive microphone and its application to security,IEEE Transactions on Instrumentation and Measurement, Vol.59, No.7, 1955-1963, 2010.
  3. G. Ueno, T. Higuchi, T. Kagimoto, N. Hirose, Maximum likelihood estimation of error covariances in ensemble-based filters and its application to a coupled atmosphere-ocean model,Quarterly Journal of the Royal Meteorological Society, Vol.136, 1316-1343, DOI:10.1002/qj.654, 2010.
  4. Ohtani, S., S. Wing, P.T. Newell, and T. Higuchi, Locations of night-side precipitation boundaries relative to R2 and R1 currents,J. Geophys. Res.,115, A10233, doi:10.1029/2010JA015444, 2010.
  5. R. Yoshida, M.M. Saito, H. Nagao, and T. Higuchi, Bayesian experts in exploring reaction kinetics of transcription circuits,Bioinformatics, Vol.26, i589-i595, 2010.
  6. V. P. Nguyen, T. Washio and T. Higuchi, A new particle filter for high dimensional state space models based on intensive and extensive proposal distribution,International Journal of Knowledge Engineering and Soft Data Paradigms, Vol.2, No. 4, 284-311, doi:10.1504/IJKESDP.2010.037492, 2010.
  7. T. Ishigaki, T. Higuchi, and K. Watanabe, Fault detection of a vibration mechanism by spectrum classification with a divergence-based kernel,IET Signal Processing, Vol.4, Iss. 5, 518-529, doi:10.1049/iet-spr.2008.0195, 2010.

2009

  1. T. Ishigaki, and T. Higuchi, Dynamic spectrum classification by Kernel classifiers with divergence-based Kernels and its applications to acoustic signals,International Journal of Knowledge Engineering and Soft Data Paradigms, Vol.1, No.2, 173-192, 2009.
  2. K. Nakamura, N. Hirose, B.H. Choi and T. Higuchi, Particle filtering in data assimilation and its application to boundary condition of tsunami simulation model,Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pp.353-366, S.K. Park and L. Xu (ed.), Springer, 2009.
  3. D. Inazu, T. Sato, S. Miura, Y. Ohta, K. Nakamura, H, Fujimoto, C. F. Larsen, and T. Higuchi, Accurate ocean tide modeling in southeast Alaska and large tidal dissipation around Glacier Bay,Journal of Oceanography, Vol.65, No. 3, 335-347, 2009.
  4. S.Nakano, G. Ueno, S. Ohtani, and T. Higuchi, Impact of the solar wind dynamic pressure on the Region 2 field-aligned currents,Journal of Geophysical Research, Vol.114, A02221, doi:10.1029/2008JA013674, 2009. [PDF583KB]
  5. S. Nakano and T. Higuchi, Estimation of a long-term variation of a magnetic- storm index using the merging particle filter, Special Section: Large Scale Algorithms for Learning and Optimization,IEICE TRANSACTIONS on Information and Systems, Vol.E92-D, No.7, 1382-1387, 2009.

2008

  1. J. Fukuda, S. Miyazaki, T. Higuchi, and T. Kato, Geodetic inversion for space-time distribution of fault slip with time-varying smoothing regularization,Geophysical Journal International, Vol.173, Issue 1, 25-48, 2008.[PDF1191KB]
  2. O. Hirose, R. Yoshida, S. Imoto, R. Yamaguchi, T. Higuchi, D. S. Charnock-Jones, C. Print, and S. Miyano, Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models,Bioinformatics, Vol.24, No.7, 932-942, doi:10.1093/bioinformatics/btm639, 2008. [PDF1076KB]
  3. S. Nakano, G. Ueno, Y. Ebihara, M.-C. Fok, S. Ohtani, P.C. Brandt, D.G. Mitchell, K. Keika, and T. Higuchi, A method for estimating the ring current structure and the electric potential distribution using ENA data assimilation,Journal of Geophysical Research, Vol.113, A05208, doi:10.1029/2006JA011853, 2008.
  4. R. Yoshida, M. Nagasaki, R. Yamaguchi, S. Imoto, S. Miyano, and T. Higuchi, Bayesian learning of biological pathways on genomic data assimilation,BioinformaticsVol.24, No.22, 2592-2601, 2008.

2007

  1. R. Yamaguchi, R. Yoshida, S. Imoto, T. Higuchi, and S. Miyano, Finding module-based gene networks with state-space models - Mining high-dimensional and short time-course gene expression data,IEEE Signal Processing Magazine, Special Issue on Signal Processing Methods in Genomics and Proteomics, vol.24, no.1, 37-46, 2007.[PDF(1,664KB)]
  2. T. Ishigaki, T. Higuchi, K. Watanabe, An Information Fusion Based Multi-objective Security System with a Multiple-input/single-output Sensor,IEEE Sensors JournalVol.7, No.5, 734-742, 2007
  3. M. Ozima, F.A.Podosek, T.Higuchi, Q-Z.Yin, A. Yamada, On the mean oxygen isotope composition of the Solar System,ICARUS,186(2), 562-570, 2007.
  4. G. Ueno, T. Higuchi, T. Kagimoto, N. Hirose, Application of the ensemble Kalman filter and smoother to a coupled atmosphere-ocean model,Scientific Online Letters on the AtmosphereVol.3, 5-8, 2007.[PDF(864KB)]
  5. G. Ueno, T. Higuchi, S. Ohtani and P. T. Newell, Particle precipitation characteristics in the dayside four-sheet field-aligned current structure, Journal of Geophysical Research, (accepted), 2007.
  6. S. Nakano, G. Ueno, and T. Higuchi, Merging particle filter for sequential data assimilation,Nonlinear Processes in Geophysics, Vol.14, 395-408, 2007.[PDF674KB]

2006

  1. S.Imoto, T.Higuchi, T.Goto, and S.Miyano, Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks Statistical Methodology,Statistical Methodology,3, 1-16, 2006.[PDF(1,911K)]
  2. M. Kamiyama, and T. Higuchi, Adjustment of Sampling Locations in Rail-Geometry Datasets:Using Dynamic Programming and Non-linear Filtering,Systems and Computers in Japan, Vol.37, No.1, 61-70, 2006.[PDF(923KB)]
  3. R. Yamaguchi and T. Higuchi, State-space Approach with the Maximum Likelihood Principle to Identify the System-Generating Time Course Gene Expression Date of Yeast,International Journal of Data Mining and Bioinformatics, December issue, Vol.1, No.1, 77 - 87, 2006.[PDF(442KB)]
  4. R. Yoshida, T. Higuchi, S. Imoto and S. Miyano, ArrayCluster: An Analytic Tool for Clustering, Data Visualization, Module Finder on Gene Expression Profiles,Bioinformatics,22, 1538 - 1539, 2006.

2005

  1. S. Ohtani, G. Ueno, T. Higuchi, H. Kawano, Annual and Semiannual Variations of the Location and Intensity of Large-Scale Field-Aligned Currents,Journal of Geophysical Research,110, A01216, #DOI 10.1029/2005.JA010634, 2005.[PDF(996K)]
  2. S. Ohtani, G. Ueno, T. Higuchi, Comparision of large-scale field-aligned currents under sunlit and dark ionospheric conditions,Journal of Geophysical Research,110, A09230, #DOI 10.1029/2005JA011057, 2005.[PDF(835K)]

2004

  1. M. Kamiyama, and T. Higuchi, Adjustment of Non-Uniform Sampling Locations in Spatial Datasets with Dynamic Programming and Non-Linear Filtering,IEEE Signal Processing Magazine, Special Issue on Signal Processing for Mining Information, Vol.21, 3, 47-56, 2004.[PDF(1016K)]
  2. S.Imoto, T.Higuchi, T.Goto, K.Tashiro, S.Kuhara, and S.Miyano, Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks,Journal of Bioinformatics and Computational Biology, Vol.2, No.1, 77-98, #DOI:10.1142/S021972000400048X, 2004.
  3. T.Sato, T.Higuchi, and G.Kitagawa, Statistical Inference using Stochastic Swiching Models for the Discrimination of Unobserved Display Promotion from POS Data,Marketing Letters, Vol.15No1,37-60, 2004.[PDF(341K)]
  4. K. Haraguchi, H. Kawano, K. Yumoto, S. Ohtani, T. Higuchi, and G. Ueno, Ionospheric conductivity dependence of dayside region-0, 1, and 2 field-aligned current systems: Statistical study with DMSP-F7,Annales Geophysicae, 22, 2775-2783, 2004.[PDF(543K)]
  5. J. Fukuda, T. Higuchi, S. Miyazaki, T. Kato, A new approach to time-dependent inversion of geodetic data using Monte Carlo mixture Kalman filter,Geophysical Journal International,159, 17-39,
    #DOI 10.1111/j.1365-246X.2004.02383.x, 2004.[PDF(365K)]

2003

  1. G. Kitagawa, T. Higuchi, and F. N. Kondo, Smoothness Prior Approach to Exolore Mean Structure in Large-scale Time Series,Theoretical Computer Science292, No.2, 431-446, 2003.
    [ps(1,784K)] [PDF(367K)]
    (original:G. Kitagawa, T. Higuchi, and F. N. Kondo, Smoothness Prior Approach to Explore the Mean Structure in Large Time Series Data,The proceedings of The Second International Conference on Discovery Science , Springer-Verlag Lecture Notes in Artificial Intelligence Series, 230-241, 1999)
  2. H. Nagao, T. Iyemori, T. Higuchi, and T. Araki, Lower Mantle Conductivity Anomalies Estimated from Geomagnetic Jerks,Journal of Geophysical Research-Solid Earth,108, No.B5, #DOI 10.1029/2002 JB001786, 2003.

2002

  1. H. Nagao, T. Iyemori, T. Higuchi, S. Nagano, and T. Araki, Local Time Features of Geomagnetic Jerks,Earth Planets and Space,54, 119-131, 2002.
  2. Ueno, G., N. Nakamura, T. Higuchi, T. Tuschiya, S. Machida, and T. Araki, Application of multivariate Maxwellian mixture model to plasma velocity distribution,Progresses in Discovery Sience, Lecture Notes in Computer Science,2281, 372―383, Springer-Verlag, 2002.
    [ps(1,353K)] [PDF(209K)]
  3. Nagao, H., T. Higuchi, T. Iyemori, and T. Araki, Automatic detection of geomagnetic jerks by applying a statistical time series model to geomagnetic monthly means,Progresses in Discovery Science, Lecture Notes in Computer Science,2281, 360―371, Springer-Verlag, 2002.
    [ps(677K)] [PDF(429K)]
  4. T. Higuchi, S.-I. Ohtani, T. Uozumi, and K. Yumoto, Pi2 onset time determination with information criterion,Journal of Geophysical Research,107, No.A7, #DOI 10.1029/2001JA003505, 2002.[PDF(836K)]

2001

  1. G. Ueno, N. Nakamura, T. Higuchi, T. Tsuchiya, S. Machida, T. Araki, Y. Saito, and T. Mukai, Application of multivariate Maxwellian mixture model to plasma velocity distribution function,Journal of Geophysical Research,106, A11, 25655-25672, 2001.

2000

  1. T. Higuchi, G. Kitagawa, Knowledge Discovery and Self-Organizing State Space Model,IEICE Transactions on Information and Systems,E83-D, No.1, 36-43, 2000.
    [ps(227K)] [PDF(185K)]
  2. T. Higuchi, and S. Ohtani, Automatic Identification of a Large-scale Field-aligend Current Structures and its Application to Night-Side Current Systems, AGU Geophysical Monograph Series118,Magnetospheric Current Systemsedited by S. Ohtani, R. Fujii, M. Hesse, and R.L. Lysak, 389-394, 2000.[PDF(448K)]
  3. S. Ohtani, T. Higuchi, T. Sotirelis, and P.T.Newell, Disappearance of Large-scale Field-aligned Current Systems: Implication to the Solar Wind-Magnetosphere Coupling, AGU Geophysical Monograph Series118,Magnetospheric Current Systemsedited by S. Ohtani, R. Fujii, M. Hesse, and R.L. Lysak, 253-259, 2000.[PDF(538K)]
  4. T. Higuchi, and S. Ohtani, Automatic Identification of a Large-scale Field-aligend Current Structures,Journal of Geophysical Research,105, A11, 25305-25315, 2000.[PDF(928K)]
  5. S. Ohtani, and T. Higuchi, Four-Sheet Structures of Dayside Field-Aligned Cuurents: Statistical Study,Journal of Geophysical Research,105, A11, 25317-25324, 2000.[PDF(642K)]

1999

  1. H. Kawano, S. M. Petrinec, C.T. Russell, and T. Higuchi, Magnetopause shape determinations from measured position and estimated flaring angle,Journal of Geophysical Research, Vol.104, No.A1, 247, 1999.[PDF(1,139K)]
  2. T. Higuchi, Applications of Quasi-Periodic Oscillation Models to Seasonal Small Count Time Series,Computational Statistics and Data Analysis,30, 281-301, 1999.[PDF(1,033K)]
  3. G. Kitagawa and T. Higuchi, Automatic Transaction of Signal via Statistical Modeling,New Generation Computing,Vol.18,17-28,1999.
    [ps(829K)] [PDF(350K)]
    (original:G. Kitagawa and T. Higuchi, Automatic Transaction of Signal via Statistical Modeling,The proceedings of The First International Conference on Discovery Science , Springer-Verlag Lecture Notes in Artificial Intelligence Series, 375-386, 1998)
  4. T. Higuchi, Automatic Identification of the Large Scale Field Aligned Current Systems as an Example of Knowledge Discovery from the Large Database(in Japanese with English Abstract),The Proceedings of the Insitute of Statistical Mathematics, Vol. 47, No.2, 291-306, 1999.

1998

  1. Ohtani, S., K. Takahashi, T. Higuchi, A.T.Y. Lui, H.E. Spence, and J.F. Fennell, AMPTE/CCE--SCATHA simultaneous observations of substorm--associated magnetic fluctuations,Journal of Geophysical Research,103, No. A3, 4671-4682, 1998.[PDF(1,067K)]

1997

  1. Higuchi, T., Monte Carlo filter using the Genetic algorithm operators,Journal of Statistical Computation and Simulation,59, No. 1, 1-23, 1997.[PDF(985K)]
  2. Higuchi, T. A seasonal adjustment designed to deal with the time series observed in the natural phenomena (in Japanese with English Abstract),Proceedings of the Institute of Statistical Mathematics, Vol. 45, No. 2, 319-328, 1997.

1996

  1. Kawano, H., and T. Higuchi, A generalization of the minimum variance method,Annals of Geophysicae,14, 1019-1024, 1996.[PDF(450K)]
  2. Higuchi, T., Genetic Algorithm and Monte Carlo Filter (in Japanese with English Abstract),Proceedings of the Institute of Statistical Mathematics, Vol. 44, No. 1, 19-30, 1996.

1995

  1. Kawano. H., and T. Higuchi, The Bootstrap Method in Space Physics: Error Estimation for the Minimum Variance Analysis,Geophysical Research Letter,22, No. 3, 307-310, 1995.[PDF(351K)]
  2. Higuchi, T., G. Igarashi, Y. Tohjima and H. Wakita, Time series analysis of groundwater radon using stochastic differential equations,Journal of Physics of the Earth,43, No. 2, 117-130, 1995.[PDF(795K)]
  3. Ohtani, S., T. Higuchi, A.T.Y. Lui, and K. Takahashi, Magnetic fluctuations associated with tail current disruption: Fractal analysis,Journal of Geophysical Research,100, 19135-19145, 1995.[PDF(952K)]

1994

  1. Higuchi, T., G. K. Crawford, R. J. Strangeway, and C. T. Russell, Separation of spin synchronized signals,Annals of the Institute of Statistical Mathematics,46, No.3, 405--428, 1994.

1993

  1. Higuchi, T., A method to separate the Spin Synchronized Signals Using a Bayesian Approach (in Japanese with English Abstract),Proceedings of the Institute of Statistical Mathematics, Vol. 41, No. 2, pp 115-130, 1993.[PDF(846K)]

1991

  1. Higuchi, T., Frequency domain characteristics of linear operator to decompose a time series into the multi--components,Annals of the Institute of Statistical Mathematics,43, No. 3, 469--492, 1991.
  2. Higuchi, T., Method to subtract an effect of the geocorona EUV radiation from the low energy particle (LEP) data by the Akebono (EXOS--D) satellite,Journal of Geomagnetism and Geoelectricity,43, 957--978, 1991.[PDF(1,282K)]

1990

  1. Higuchi, T., Relationship between the fractal dimension and the power law index for a time series: a numerical investigation,Physica D,46, 254--264, 1990.[PDF(636K)]
  2. Higuchi, T., An interpretation of Auto-regression (AR) Model by using a Linear Algebra (in Japanese with English Abstract),Proceedings of the Institute of Statistical Mathematics, Vol. 38, No. 1, pp 31-45, 1990.

1989

  1. Kita, K., T. Higuchi, and T. Ogawa, Baysian statistical inference of airglow profiles from rocket observational data: comparison with conventinal methods,Planetary Space Science,37, No. 11, 1327--1331, 1989.[PDF(380K)]
  2. Higuchi, T., Fractal Analysis of Time Series (in Japanese with English Abstract),Proceedings of the Institute of Statistical Mathematics, Vol. 37, No. 2, 209-233, 1989.

1988

  1. Higuchi, T., Approach to an irregular time series on the basis of the fractal theory,Physica D,31, 277--283, 1988.[PDF(410K)]
  2. Higuchi, T., K. Kita, and T. Ogawa, Bayesian statistical inference to remove periodic noises in the optical observation aboard a spacecraft,Applied Optics,27, No. 21, 4514--4519, 1988.[PDF(343K)]
  3. Higuchi, T., and S. Kokubun, Waveform and polarization of compressional Pc 5 waves at geosynchronous orbit,Journal of Geophysical Research,93, No. A12, 14433--14443, 1988.
  4. Higuchi, T., Quantitative analysis in turbulent fluctuations in the magnetosheath, Doctor thesis of University of Tokyo, 1988.

1986

  1. Higuchi, T., S. Kokubun, and S. Ohtani, Harmonic structure of compressional Pc 5 pulsations at synchronous orbit,Geophysical Research Letter,13, No. 11, 1101--1104, 1986.
  2. Oguti, T., K. Hayashi, T. Yamamoto, J. Ishida, T. Higuchi, and N. Nishitani, Abcence of hydromagnetic waves in the magnetosperic equatorial region conjugate with pulsating auroras,Journal of Geophysical Research,91, No. A12, 13711--13715, 1986.

Go to top of page

Refereed Proceedings

  1. H. Nagao and T. Higuchi, Data assimilation system for seismoacoustic waves,Proceedings of 16th International Conference on Information Fusion, 2013.
  2. M. M. Satio, S. Imoto, R. Yamaguchi, S. Miyano, T. Higuchi, Estimation of abrupt changes in sentinel observation data of influenza epidemics in Japan, Proceedings of 16th International Conference on Information Fusion, 2013.
  3. M. Saito, S. Imoto, R. Yamaguchi, H. Sato, H. Sakada, M. Kami, S, Miyano, T. Higuchi, Parallel agent-based simulator for Influenza pandemic,Advanced Agent Technology, Lecture Notes in in Computer Science, Springer,Vol.7068, 361-370, 2012.
  4. T. Imoto, S. Nakano, T. Higuchi, Modeling human behavior selection under environmental subsidy policy by multi-agent simulation,Advanced Agent Technology, Lecture Notes in in Computer Science, Springer,Vol.7068, 350-358, 2012.
  5. K. Hirose and T. Higuchi, Generating artistic character facial animation based on motion capture data,Proceedings of International Workshop on Advanced Image Technology, 240-245, 2012.
  6. M. Saito, S. Imoto, R. Yamaguchi, S. Miyano, T. Higuchi, Identifiability of local transmissibility parameters in agent-based pandemic simulation,Proceedings of 15th International Conference on Information Fusion, 2012.
  7. H. Nagao and T. Higuchi, Data assimilation of the earth's atmospheric and ionospheric oscillations excited by large earthquakes,Proceedings of 15th International Conference on Information Fusion, 2012.
  8. S. Nakano and T. Higuchi, Weight adjustment of the particle filter on distributed computing systems,Proceedings of 15th International Conference on Information Fusion, 2012.
  9. T. Higuchi, Embedding reality in a numerical simulation with data assimilation,Proceedings of 14th International Conference Fusion, 2011.
  10. H. Nagao, N. Kobayashi, S. Nakano and T. Higuchi, Fault parameter estimation with data assimilation on infrasound variations due to big earthquakes,Proceedings of 14th International Conference Fusion, 2011.
  11. M. Saito, S. Imoto, R. Yamaguchi, S. Miyano and T. Higuchi, Estimation of macroscopic parameter in agent-based pandemic simulation,Proceedings of 14th International Conference Fusion, 2011.
  12. S. Nakano, and T. Higuchi, A dynamic grouping strategy for implementation of theparticle filter on a massively parallel computer,Proceedings of 13th International Conference Fusion, 2010.
  13. H. Nagao, and T. Higuchi, Web application for time-series analysis based on particle filter available on cloud computing system,Proceedings of 13th International Conference Fusion, 2010.
  14. K. Hayashi, M.M. Saito, R. Yoshida, T. Higuchi, Implementation of Sequential Importance Sampling in GPGPU,Proceedings of 13th International Conference Fusion, 2010.
  15. K. Nakamura, R. Yoshida, M. Nagasaki, S. Miyano, and T. Higuchi, Parameter Estimation of In Silico Biological Pathways with Particle Filtering Towards a Petascale Computing,The Proceedings of 14th Pacific Symposium on Biocomputing, 227-238, 2009.
  16. T. Ishigaki, and T. Higuchi, Dynamic Spectrum Classification by Divergence-Based Kernel Machines and Its Application to the Detection of Worn-out banknotes,The Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE ICASSP 2008), 1873-1876, 2008.
  17. T. Ishigaki, and T. Higuchi, Parameter identification of a pressure regulator with a nonlinear structure using a particle filter based on the nonlinear state space model,The Proceedings of 11th International Conference of Fusion, 886-891, 2008.
  18. R. Yamaguchi, S. Imoto, M. Yamauchi, M. Nagasaki, R. Yoshida, T. Shimamura, Y. Hatanaka, K. Ueno, T. Higuchi, N. Gotoh, S. Miyano, Predicting differences in gene regulatory systems by state space models,Genome Informatics, 21:101-113, 2008.
  19. O.Hirose, R.Yoshida, R.Yamaguchi, S.Imoto, T.Higuchi, S.Miyano, Analyzing time course gene expression data with biological and technical replicates to estimate gene networks by state space models,Proc. 2nd Asia International Conference on Modelling & Simulation, 940-946, 2008(AMS2008: Refereed conference)
  20. O.Hirose, R.Yoshida, R.Yamaguchi, S.Imoto, T.Higuchi, S.Miyano, Clustering with time course gene expression profiles and the mixture of state space models,Genome Informatics, 18, 258-266, 2007.
  21. M. Nagasaki, R. Yamaguchi, R. Yoshida, S. Imoto, A. Doi, Y. Tamada, H. Matsuno, S. Miyano, T. Higuchi, Genomic Data Assimilation for Estimating Hybrid Functional Petri Net from Time-course Gene Expression Data,Proceedings of The Sixth International Workshop on Bioinformatics and Systems Biology (IBSB2006) , (accept), 2006
  22. T. Ishigaki, T. Higuchi, K. Watanabe, Spectrum classification for early fault diagnosis of LP gas pressure regulator based on Kullback-Leibler Kernel,Proceedings of the 2006 IEEE Signal Processing Society Workshop(MLSP2006) , 453-458, 2006.[PDF(725K)]
  23. G. Ueno, T. Higuchi, T. Kagimoto, N. Hirose, Application of the Ensemble Kalman Filter to Atmosphere-Ocean Coupled Model,Proceedings of Nonlinear Statistical Signal Processing Workshop 2006 , 2006.[PDF(90K)]
  24. G. Ueno, T. Higuchi, T. Kagimoto, N. Hirose, Prediction of ocean state by data assimilation with the ensemble Kalman filter,Proceedings of Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems(SCIS & ISIS 2006) , 1884-1889, 2006.
  25. K. Nakamura, T. Higuchi, N. Hirose, Application of particle filter to identification of tsunami simulation model, Proceedings ofProceedings of Joint 3rd International Conference on Soft Computing and Intelligent Systems and 7th International Symposium on advanced Intelligent Systems(SCIS & ISIS 2006) , 1890-1895, 2006.
  26. S. Tasaki, M. Nagaski, M. Oyama, H. Hata, K. Ueno, R. Yoshida, T. Higuchi, S. Sugano, S. Miyano, Modeling and Estimation of Dynamic EGFR Pathway by Data Assimilation Approach Using Time Series Proteomic Data,
    Proceedings of Genome Informatics 2006 ,Genome Informatics,17(2), 226-238, 2006
  27. S. Yamashita, T. Higuchi, Estimating gene networks with cDNA microarray Data Using State-space models,Proceedings of 2005 International Workshop on Data Mining and Bioinformatics ,Lecture Notes in Computer Science, Springer,3482, 381-388, 2005.
  28. R. Yoshida, S. Imoto, T. Higuchi , A Penalized Likelihood Estimation on Transcriptional Module-based Clusterintg,Proceedings of 2005 International Workshop on Data Mining and Bioinformatics ,Lecture Notes in Computer Science, Springer,3482, 389-401, 2005.[PDF(412K)]
  29. R. Yoshida, S. Imoto, T. Higuchi, Estimating Time-Dependent Gene Networks from Time Series Microarray Data by Dynamic Linear Models with Markov Switching ,Proceeedings of Computational Systems Bioinformatics Conference(CSB2005) , 289-298, 2005.[PDF(1551K)]
  30. S. Imoto, T. Higuchi, S. Kim, E. Jeong, S. Miyano, Residual Bootstrapping and Median Filtering for Robust Estimation of Gene Networks from Microarray Data,Proceedings of Computational Methods in Systems Biology '04 , LNBI,3082, 149-160, 2004.[PDF(291K)]
  31. R. Yoshida, T. Higuchi, S. Imoto, A Mixed Factors Model for Dimension Reduction and Extraction of a Group Structure in Gene Expression Data,Proceedings of 2004 IEEE Computational Systems Bioinformatics Conference , 161-172, 2004.[PDF(498K)]
  32. T. Higuchi,and J. Fukuda, Monte Carlo Mixture Kalman filter and its application to GPS data analysis for spase-time inversion,13th IFAC Symposium on System Identification , 1299-1304, 2003.[PDF(101K)]
  33. S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, S. Miyano, Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Networks,Proceedings of 2003IEEE Computer Society Bioinformatics Conference , 104-113, 2003.[PDF(201K)]
  34. M. Kamiyama, T. Higuchi, Non-linear filtering approach to an adjustment of non-uniform sampling locations in spatial datasets,Proceedings of 2003 IEEE Workshop on Statistical Signal Processing , 181-184, 2003.[PDF(449K)]
  35. T. Higuchi, Data assimilation with Monte Carlo mixture Kalman filter toward space weather forecasting,Proceedings of International Symposium on Information Science and Electrical Engineering 2003 , 122-125, 2003.[PDF(111K)]
  36. K. Haraguchi, H. Kawano, K. Yumoto, S. Ohtani, T. Higuchi, Characteristics of Field-Aligned Currents observed by the DMSP satellite,Proceedings of International Symposium on Information Science and Electrical Engineering 2003 , 358-360, 2003.
  37. K. Fukuyama, T. Higuchi, T. Uozumi, H. Kawano, K. Yumoto, Determination of onset times of Pi2 magnetic pulsations,Proceedings of International Symposium on Information Science and Electrical Engineering 2003 , 522-525, 2003.
  38. G. Kitagawa, T. Higuchi, and S. Sato, Computational methods for time series analysis,Proceedings of Computational Statitstics 2002, W. Hardle and B. Ronz eds., 1-10, 2002.
  39. N. Ikoma, T. Higuchi, and H. Maeda, Maneuvering target tracking by using particle filter method with model switching structure,Proceedings of Computational Statitstics 2002, W. Hardle and B. Ronz eds., 35-40, 2002.
  40. T.Ikoma, N.Ichimura, T Higuchi, and H.Maeda, Particle Filter Based Method for Maneuvering Target Tracking ,IEEE International Workshop on Intelligent Signal Processing , 3-8, 2001.
    [ps(258K)] [PDF(203K)]
  41. Genta Ueno, Nagamoto Nakamura, and Tomoyuki Higuchi, Separation of Photoelectrons via Multivariate Maxwellian Mixture Model,The proceedings of The Forth International Conference on Discovery Science , Lecture Notes in Artificial Intelligence,2226, 470-475, 2001.
    [ps(335K)] [PDF(80K)]
  42. T. Higuchi, and S. Ohtani, Automatic Identification of Large-Scale Field-Aligned Current Structures: Statistical Approach,The proceedings of World Automation Congress 2000(WAC 2000) , 2000.
    [PDF (206K)]
  43. T. Higuchi, Decomposition of Small Count Time Series into Multi-Factor Components by Sequential Monte Carlo Method,The Proceedings of Workshop on Information-Based Induction Sciences 2000(IBIS2000) , 307-312, 2000.
    [PDF (215K)]
  44. G. Ueno, N. Nakamura, T. Higuchi, T. Tsuchiya, S. Machida, and T. Araki, Application of Multivariate Maxwellian Mixture Model to Plasma Velocity Distribution Function,The proceedings of The Third International Conference on Discovery Science ,Lecture Notes in Artificial Intelligence,1967, 197-211, 2000.
  45. Tomoyuki Higuchi, Automatic and Accurate Determination of the Onset Time of the Quasi-periodic Oscillation,The proceedings of The Third International Conference on Discovery Science ,Lecture Notes in Artificial Intelligence,1967, 242-246, 2000.
    [ps(216K)] [PDF(129K)]
  46. G. Kitagawa, T. Higuchi, and F. N. Kondo, Smoothness Prior Approach to Explore the Mean Structure in Large Time Series Data,The proceedings of The Second International Conference on Discovery Science , Springer-Verlag Lecture Notes in Artificial Intelligence Series, 230-241, 1999.
  47. Genta Ueno, Shinobu Machida, Nagatomo Nakamura, Tomoyuki Higuchi, and Tohru Araki, Detection of the Structure of Particle Velocity Distribution by Finite Mixture Distribution Model,The proceedings of The Second International Conference on Discovery Science , Springer-Verlag Lecture Notes in Artificial Intelligence Series, 366-368, 1999.
  48. G. Kitagawa and T. Higuchi, Automatic Transaction of Signal via Statistical Modeling,The proceedings of The First International Conference on Discovery Science , Springer-Verlag Lecture Notes in Artificial Intelligence Series, 375-386, 1998.
  49. Higuchi, T., Separation of spin synchronized signals using a Bayesian approach,Proceeding of "The Frontiers of statistical modeling: An informational approach", (eds. H. Bozdogan), Kluwer Academic Publishers, 193--215, 1994.

Go to top of page

Proceedings

  1. Norikazu Ikoma , Noyuki Ichimura , Tomoyuki Higuchi, and Hiroshi Maeda ManeuveringTarget Tracking by Using Particle Filter,Joint 9th IFSA World Congress and 20th NAFIPS International Conference of NAFIPS(IFSA-NAFIPS2001) , 2001.
    [ps(227K)] [PDF(173K)]
  2. Tomoyuki Higuchi, Evolutionary Time Series Model with Parallel ComputingThe Third JAPAN-US Joint Seminar on Statistical Time Series Analysis,2001.
    [PDF(367K)]
  3. T. Higuchi, Analysis of small count time series with time varying frequency component,The proceedings of the ISM International Symposium on Frontiers of Time Series Modeling(edited G. Kitagawa and T. Higuchi), pp. 12-23, 2000.
  4. Ohtani, S--I., T. Higuchi, A. T. Y. Lui, and K. Takahashi, A fractal analysis of magnetic signatures associated with tail current disruption,The proceedings of the Second International Conference on Substorms, pp 223-227, edited by J. R. Kan, J. D. Craven, and S.-I. Akasofu, Geophiscs Institute, University of Alaska, Fairbanks, 1994.
  5. Higuchi, T., S. Kokubun, and C. T. Russell, Quantitative investigation of turbulent fluctuations in the magnetosheath,Proceedings of Conference on Plasma Waves and Instabilities in Magnetospheric and at Comets, 120--123, 1987.

Go to top of page

Books

  1. Higuchi, T., Self-organizing Time Series Model, inSequential Monte Carlo Methods in Practice (eds. A. Doucet, J.F.G, de Freitas, and N.J.Gordon), pp.429-444, Springer-Verlag New York, 2001.
    [ps(258K)] [PDF(203K)]
  2. Higuchi, T., Processing of Time Series Data Obtained by Satellites,The Practice of Time Series Analysis(eds. H. Akaike and G. Kitagawa), pp 313-326, Springer-Verlag New York, 1999.[PDF(934K)]

Go to top of page